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OUTLINE 

!! Singlet Higgs + sterile neutrino models have many 
motivations: neutrino masses, dark matter, baryogenesis. 

!! Bounds on the Higgs sector are relaxed compared to the 

SM. 

!! Revised branching ratios and decay modes for both Higgs 
particles. 

!! Collider signatures of sterile neutrino decays: missing 
energy, displaced vertices, lepton number violation.  



Neutrino masses 

!! The discovery of neutrino masses implies physics beyond 
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Neutrino masses 

!! The discovery of neutrino masses implies physics beyond 
the SM. 

!! Most new models introduce sterile states of some 

number, 

 with the following Langrangian, 

 where              . 

!! While these states are introduced to explain neutrino 
masses, they can also explain dark matter for a range of 
parameters.  
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Seesaw mechanism 

!! With both Dirac and Majorana mass terms, neutrinos mix 
via: 

!! When              mass eigenstates separate into two types: 
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Seesaw mechanism 

!! With both Dirac and Majorana mass terms, neutrinos mix 
via: 

!! When              mass eigenstates separate into two types: 

!! Steriles for which                              have a dominant 
contribution to the active mass matrix.    
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Seesaw mechanism 

!! With both Dirac and Majorana mass terms, neutrinos mix 
via: 

!! When              mass eigenstates separate into two types: 

!! Steriles for which                              have a dominant 
contribution to the active mass matrix.    

!! But what’s the origin of the new scale      ?  
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Singlet extended Higgs sector 

!! Suppose that, like all other SM fermion masses, the RH 
Majorana mass comes from the Higgs mechanism: 
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Singlet extended Higgs sector 

!! Suppose that, like all other SM fermion masses, the RH 
Majorana mass comes from the Higgs mechanism: 

!! Since S is a real singlet, the most general potential 
(assuming no new symmetries): 

!! If one imposes a      symmetry on the S boson, it can be a 
stable DM candidate, but no neutrino masses [Barger, 
Langacker, McCaskey, Ramsey-Musolf, Shaughnessy (2007)]  
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Singlet extended Higgs sector 

!! Suppose that, like all other SM fermion masses, the RH 
Majorana mass comes from the Higgs mechanism: 

!! Since S is a real singlet, the most general potential 
(assuming no new symmetries): 

!! If one imposes a      symmetry on the S boson, it can be a 
stable DM candidate, but no neutrino masses [Barger, 
Langacker, McCaskey, Ramsey-Musolf, Shaughnessy (2007)]  
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Singlet extended Higgs sector 

!! Suppose that, like all other SM fermion masses, the RH 
Majorana mass comes from the Higgs mechanism: 

!! This interaction is interesting cosmologically, as              
decays can produce keV sterile neutrinos with the right 
relic abundance to be DM [Kusenko, Petraki, Tkachev, 
Shaposhnikov].  

!! Same keV sterile neutrino can possibly explain pulsar kicks. 
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Shaposhnikov].  

!! Same keV sterile neutrino can possibly explain pulsar kicks. 

!! DM keV neutrinos will not be produced at colliders.  
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Singlet extended Higgs sector 

!! Suppose that, like all other SM fermion masses, the RH 
Majorana mass comes from the Higgs mechanism: 

!! This interaction is interesting cosmologically, as              
decays can produce keV sterile neutrinos with the right 
relic abundance to be DM [Kusenko, Petraki, Tkachev, 
Shaposhnikov].  

!! Same keV sterile neutrino can possibly explain pulsar kicks. 

!! DM keV neutrinos will not be produced at colliders. 

!! Is there any hope of finding sterile neutrinos at a collider?  
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How to produce sterile neutrinos at a 

collider 
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Yukawa term 

Large yukawa 
couplings + large 
singlet-doublet Higgs 
mixing = sterile 
neutrinos produced 
at a collider. 



Relaxed constraints on the Higgs sector 

!! Higgs doublet-singlet mixing suppresses the gauge 
interactions of the Higgs’s. 

!! Reduced production cross section of the Higgs. 

!! Reduced branching ratios to SM states. 

!! Branching ratios are further reduced due to the existence 
of new decays modes. 



Higgs mixing and couplings 

!! Singlet and doublet Higgses mix: 

!! Where the mixing angle is determined by scalar potential. 
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Higgs mixing and couplings 

!! Singlet and doublet Higgses mix: 

!! Where the mixing angle is determined by scalar potential. 

!! We adopt the convention 
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Higgs mixing and couplings 

!! Singlet and doublet Higgses mix: 

!! Where the mixing angle is determined by scalar potential. 

!! We adopt the convention 

!! The couplings to SM and sterile neutrinos now given by:    
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Light Higgs (H1) Heavy Higgs (H2) 

Higgs-Neutrino coupling 

Higgs-SM coupling 
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Mass mixing determines bounds 

!! (1) Small            : 
!! Light Higgs is mostly doublet           obeys SM LEP bound. 

!! Heavy Higgs is mostly singlet           weakened EWPO bound. 

!! (2) Maximal mixing: 
!! Light Higgs is mixed            weakened LEP bound. 

!! Heavy Higgs is mixed  weakened EWPO bound. 

!! (3) Large           : 
!! Light Higgs is mostly singlet          weakened LEP bound. 

!! Heavy Higgs is mostly doublet  obeys SM EWPO bound.        
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Higgs branching fractions 

!! With modified Higgs-SM couplings and the introduction 
sterile neutrino mode, BR are altered as 

!! Light Higgs: 

!! Heavy Higgs:  
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Higgs branching ratios 

!! We can relate the new branching ratios to the SM values: 

!! While non-SM channels have 

!! Thus in the limit that            the Higgs becomes SM-like. 
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Imposing LEP  

constraints 

!! A SM Higgs is ruled out at 95% CL for                      .  
!! Assumes SM production cross section and SM branching ratios. 

!! However LEP has non-SM bounds, constrained by the 

parameter: 

!! Reduced HZZ coupling and/or reduced SM branching 
fractions weakens the LEP bound.  
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Lower bound on      mass  
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S = 200 GeV!

As the mixing increases 
the light Higgs becomes  
dominantly singlet, and  
decouples from the SM. 

As the Yukawa coupling 
increases, the branching 
fraction to NN increases,  
reducing SM Br’s.   
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Electroweak precision observable (EWPO) 

bounds 

!! Radiative corrections to the W and Z boson propagators 
from the scalar sector imply a weakening of EWPO 
constraints. 

!! Maximal mixing reduces the EWPO upper bound on the 

heaviest Higgs to 

!! Dominant radiative corrections come from Higgs sector.   
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[Barger et al. (2007), Profumo, Ramsey-Musolf, Shaughnessy (2007)] 



Modified Higgs bounds 



Decays of the sterile neutrino 

!! Mass mixing from the see-saw mechanism gives sterile 

neutrinos an effective EW coupling.  

Graesser [0705.2190], Graesser [0704.0438],  Gorubov, Shaposhnikov [0705.1729]. 
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Decays of the sterile neutrino 

!! Mass mixing from the see-saw mechanism gives sterile 

neutrinos an effective EW coupling.  

!! Sufficiently heavy sterile neutrinos decay to 

!! While lighter neutrinos go to off-shell gauge bosons 

!! Each decay produces odd number of leptons.   
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Sterile neutrino decays 
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(two charged leptons + 
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Heavy steriles decay 
mostly into (charged 
lepton + W boson) 
or (Z + missing 
energy).  



Displaced vertices 

cΤN � 10�m

cΤN � 0.1�cm

Θ2 � 10�12

Θ2 � 10�11

Θ2 � 10�10

1 5 10 50 100 500 1000

10
�15

10
�12

10
�9

10
�6

10
�3

1

MN�GeV�

Τ N
�sec�

Intermediate neutrino masses 

decay displaced from production 
region. 

  

 

21 GeV
10

-11

sin
2"

# 

$ 
% 

& 

' 
( 

1/ 5

) M
N
) 86 GeV

10
-11

sin
2"

# 

$ 
% 

& 

' 
( 

1/ 5



Light neutrinos appear as missing energy 

!! Neutrinos with              decay decay outside the 

detector,  and appear as missing energy. 

!! Discoverability of invisibly decaying Higgs assessed in 
[Eboli, Zeppenfield (2000)].  

!! When                                    , and the Higgs is produced 
via weak boson fusion appropriate cuts on the correlation 

of the forward jets allow for a      detection .  
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Summary 

!! Extended singlet sector relaxes both direct LEP and 
indirect EWPO bounds on Higgs masses.  

!! Viable models have large NN branching fractions. 

!! Collider signatures depend on the sterile neutrino mass:  

!! Light neutrinos appear as missing energy. 

!! Intermediate neutrinos decay with macroscopically displaced 
vertex with lepton number violation. 

!! Heavy neutrinos decay promptly with lepton number violation.  



Extra slides 
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Motivations 

!! A ~keV sterile neutrino can be dark matter and explain 
pulsar kicks.  

!! Singlet Higgs allows for the possibility of a 1st order phase 

transition, making EW baryogenesis possible [Petraki, 
Kusenko (2008)]. 

!! Neutrinos have mass.    
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Heavy higgs decays 
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Sterile neutrino decays 
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Extended Higgs sector 

!! The real singlet field has mass mixings and couplings to 
SM Higgs: 

!! For example: 
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Singlet extended higgs sector 

!! Suppose that, like all other SM fermion masses, the RH 
Majorana mass comes from the Higgs mechanism: 

!! Most general potential (assuming no new symmetries): 

!! Kusenko (2006) has shown that a keV sterile neutrino can be 
DM and explain pulsar kicks.  

!! Petraki and Kusenko (2008) have shown that S decays can be 
dominant production mechanism of DM and the presence of S 
allows for a 1st order EWPT.  
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Review 

!! Constraints on the Higgs boson properties from the hep-
ph/9703412 
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!! In the standard model, neutrinos are massless. 
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Neutrino masses 

!! In the standard model, neutrinos are massless. 

!! This suggests the existence of right-handed neutrinos: 

!! Thus active and sterile neutrinos mass mix via: 
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LEP bounds are generically relaxed 

Maximal mixing reduces LEP bound to 
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Displaced vertices 
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